Boundary Stabilization of a Flexible Manipulator with Rotational Inertia

نویسندگان

  • Bao-Zhu Guo
  • Jun-Min Wang
  • Viorel Barbu
  • Siu-Pang Yung
چکیده

We design a stabilizing linear boundary feedback control for a one-link flexible manipulator with rotational inertia. The system is modelled as a Rayleigh beam rotating around one endpoint, with the torque at this endpoint as the control input. The closed-loop system is nondissipative, so that its well posedness is not easy to establish. We study the asymptotic properties of the eigenvalues and eigenvectors of the corresponding operator A and establish that the generalized eigenvectors form a Riesz basis for the energy state space. It follows that A generates a C0-semigroup that satisfies the spectrum-determined growth assumption. This semigroup is exponentially stable under certain conditions on the feedback gains. If the higher-order feedback gain is set to zero, then we obtain a polynomial decay rate for the semigroup. Accepted for publication: February 2005. AMS Subject Classifications: 93C20, 93D15, 35B35, 35P10. The first author was supported by the National Natural Science Foundation of China and the National Research Foundation of South Africa. 1013 1014 Bao-Zhu Guo, Jun-Min Wang, and Siu-Pang Yung

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Feedback Stabilization of a Nonlinear Flexible Gantry Manipulator Using Disturbance Observer

This paper aims to develop a boundary control solution for a single-link gantry robot manipulator with one axis of rotation. The control procedure is considered with link’s transverse vibrations while system undergoes rigid body nonlinear large rotation and translation. Initially, based on Hamilton principle, governing equations of hybrid motions as a set of partial differential equations...

متن کامل

Optimal Trajectory of Flexible Manipulator with Maximum Load Carrying Capacity

In this paper, a new formulation along with numerical solution for the problem of finding a point-to-point trajectory with maximum load carrying capacities for flexible manipulators is proposed. For rigid manipulators, the major limiting factor in determining the Dynamic Load Carrying Capacity (DLCC) is the joint actuator capacity. The flexibility exhibited by light weight robots or by robots o...

متن کامل

Sensitivity Analysis of Single Flexible Link Based on Sobol\'s Method

In this research the sensitivity analysis of the geometric parameters such as: length, thickness and width of a single link flexible manipulator on maximum deflection (MD) of the end effector and vibration energy (VE) of that point are conducted. The equation of motion of the system is developed based on Gibbs-Appel (G-A) formulation. Also for modeling the elastic property of the system the ass...

متن کامل

Maximum Allowable Dynamic Load of Flexible 2-Link Mobile Manipulators Using Finite Element Approach

In this paper a general formulation for finding the maximum allowable dynamic load (MADL) of flexible link mobile manipulators is presented. The main constraints used for the algorithm presented are the actuator torque capacity and the limited error bound for the end-effector during motion on the given trajectory. The precision constraint is taken into account with two boundary lines in plane w...

متن کامل

Nonlinear Stabilizing Controller for a Special Class of Single Link Flexible Joint Robots

Joint flexibility is a very important factor to consider in the controller design for robot manipulators if high performance is expected. Most of the research works on control of flexible-joint robots in literature have ignored the actuator dynamics to avoid complexity in controller design. The problem of designing nonlinear controller for a class of single-link flexible-joint robot manipulator...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005